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Near the threshold of stability, an intrinsically denser fluid heated from below
and underlying an isothermal fluid can undergo oscillatory instability, whereby
perturbations to the interface between the fluids rise and fall periodically, or it can be
mechanically stable and in thermal equilibrium with heat flux extracted by small-scale
convection at the interface. Both the analysis of marginal stability and laboratory
experiments in large-Prandtl-number fluids show that the critical Rayleigh number,
scaled to parameters of the lower fluid, depends strongly on the buoyancy number,
B , the ratio of the intrinsic density difference between the fluids and the maximum
density difference due to thermal expansion. For small buoyancy number, B < ∼0.1,
the critical Rayleigh number, RaC , for oscillatory instability is small RaC < ∼50, and
increases steeply for B ∼ 0.25. For B > ∼0.5 and RaC > ∼1100, a second form of
instability develops, in which convection is confined to the lower layer. The analysis
of marginal stability for layers with very different viscosities shows further that two
modes of oscillatory instability exist, depending on the value of B . For B < 0.275, the
entire lower layer is unstable, and wavelengths of perturbations that grow fastest are
much larger than its thickness. For B > 0.275, only the bottom of the lower layer is
buoyant, and instability occurs by its penetrating the upper part of the lower layer;
the wavelengths of the perturbations that grow fastest are much smaller than those for
B < 0.275, and the maximum frequency of oscillatory instability is much larger than
that for B < 0.275. Oscillations in the laboratory experiments show that the heights
to which plumes of the lower fluid rise into the upper one increase with the Rayleigh
number. Moreover, in the finite-amplitude regime, the oscillation is not symmetrical.
Plumes that reach maximum heights fall quickly, folding on themselves and entraining
some of the upper fluid. Hence oscillatory convection provides a mechanism for
mixing the fluids. Applied to the Earth, these results bear on the development of
continental lithosphere, whose mantle part is chemically different from the underlying
asthenosphere. As shown by the laboratory experiments and stability analysis, the
lithosphere can be mechanically stable and in thermal equilibrium such that heat
supplied by small-scale convection at the top of the asthenosphere is conducted
through it. The lithosphere seems to have developed in a state near that of instability
with different thicknesses depending on its intrinsic buoyancy. It may have grown not
only by chemical differentiation during melting, but also by oscillatory convection
entraining chemically denser material from the asthenosphere.
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1. Introduction
Despite the nearly homogeneous chemical composition of the Earth’s mantle,

chemically distinct layers mark its top and apparently also its bottom. A chemically
distinct bottom of the Earth’s mantle not only may account for the large lateral
heterogeneity in seismic wave speeds there (Lay et al. 1997), but also may play a key
role in the formation of mantle plumes, which manifest themselves as localized sources
of volcanism at the Earth’s surface (e.g. Davaille, Girard & Le Bars 2002; Jellinek &
Manga 2002, 2004; Le Bars & Davaille 2004). Chemical differences between boundary
layers at the top of the upper mantle beneath continents and oceans seem to have
played a crucial role in the preservation of continental regions throughout nearly the
entire 4.45 Ga age of the Earth, compared with rapid replacement of oceanic plates on
times scales of 200 Myr. With these aspects of Earth history in mind, we undertook a
study of the role that chemical differences play in what is largely thermally induced
convection in the mantle.

The strong temperature dependence of viscosity in the Earth makes its top boundary
layer, the lithosphere, sufficiently strong that it behaves rigidly on geologic time scales.
This simple property of rock-forming minerals enables lithospheric plates to span
horizontal distances that, unlike the case for Rayleigh–Bénard convection, do not
scale with the depth of the convecting region. The strength of the plates, therefore,
plays a crucial role in enabling them to remain at the Earth’s surface for long
durations, instead of being swept into downwelling plumes or sheets. The oldest parts
of lithospheric plates, within ancient continents, seem, however, to have relied also
on chemical differences for their preservation (e.g. Jordan, 1975, 1978, 1988).

Melting and separation of the melt from the mantle to form continental crust leaves
a residue with a somewhat lower density than the mantle beneath it. Thus, ancient
lithosphere with its relatively low density forms the thickest lithospheric plates on
Earth and studies of diamonds and other minerals erupted through it show that
thick lithosphere formed early in Earth’s history, more than 3 × 109 years ago (e.g.
Richardson et al. 1984; Pearson et al. 1995; Carlson et al. 2000). Younger continental
lithosphere is thinner and also intrinsically denser (e.g. Poudjom Djomani et al. 2001).
We contend that the difference in thickness, composition and density between ancient
and younger lithosphere reflects the effects of chemically induced, intrinsic density
differences on convective stability (Cottrell, Jaupart & Molnar 2004).

To understand how this low-density lithosphere formed, and the role that chemical
differences play in sustaining it, requires an understanding of how convection,
including convective instability, occurs in a fluid whose density depends, not only
on temperature, but also on composition. The role of chemical differences in fluids
has received much attention in analyses of doubly diffusive convection, in which both
temperature and chemical differences diffuse through a fluid, for instance in studies of
salt fingers in the ocean (e.g. Worster 2004) and of magmas (Jaupart & Tait 1995). The
role of chemical differences in mantle-wide convection has recently generated interest
because of the wealth of dynamic regimes allowed (Davaille 1999a, b; Jellinek &
Manga 2002, 2004; LeBars & Davaille 2002; Zaranek & Parmentier 2004). The
difficulty in determining the magnitude of intrinsic density contrasts in the Earth
mantle, however, has limited the applicability of these studies. It is perhaps surprising
that the one part of the Earth mantle where intrinsic density differences can be
determined through direct sampling, the lithosphere, has received so little attention.
These limits motivated the present study of convection in a layered medium with
two chemically different fluids and therefore with different intrinsic densities, which is
cooled from above or heated from below. Cottrell et al. (2004) presented preliminary
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results. Here we discuss marginal stability and describe laboratory experiments,
which are of general interest because they both illustrate well a form of oscillatory
convection.

Although oscillatory instability has been known as a general concept for more than
100 years (e.g. Drazin & Reid 1981, p. 12), Richter & Johnson (1974) showed in a
study applied to the Earth how the addition of an intrinsic density difference, due
to chemical differences between layers, can lead to oscillatory convective instability.
Such oscillatory instability has also been observed in the laboratory experiments of
Davaille (1999a) and Le Bars & Davaille (2002, 2004).

1.1. The Earth’s lithosphere

Oceanic lithosphere thickness varies as a function of age and reaches a maximum
of about 100 km, but continental lithosphere can be as thick as 250 km beneath
Archean cratons (Rudnick, McDonough & O’Connell 1998; Jaupart & Mareschal
1999; Gung, Panning & Romanowicz 2003). The density of the continental litho-
sphere determined directly using xenoliths at atmospheric pressure and temperature
appears to vary with age, from 3.31 Mg m−3 for Archean material (4.0 to 2.5 Ga) to
3.36 Mg m−3 for the Phanerozoic era (since ∼600 Ma). In comparison, the density of
the underlying convecting mantle at the same temperature and pressure is estimated
to be 3.39 Mg m−3 (Poudjom Djomani et al. 2001). These results indicate that the
continental lithosphere down to its base is intrinsically buoyant (i.e. because of its
chemical composition) with respect to the convecting mantle, a result corroborated
by studies of large-scale gravity and geoid anomalies (e.g. Doin, Fleitout & McKenzie
1996). The intrinsic buoyancy, defined as �ρc/ρ0, where �ρc is the chemical density
difference and ρ0 a reference density for the mantle, takes values between about
1 % and 2.5 %. The intrinsic buoyancy thus varies from case to case, but so does
lithosphere thickness, from values as large as 250 km for Archean continents to about
150 km beneath continents younger than ∼600 Ma. Continental lithosphere of various
ages, compositions and thicknesses appears to be stable, in contrast to that beneath
oceans, which suggests the existence of multiple stable states (Cottrell et al. 2004).

The intrinsic buoyancy of continental lithosphere is not sufficient to guarantee
its stability at the top of Earth’s convecting mantle: lithosphere is cooled from
above and hence develops a negative buoyancy. The temperature difference across
the mantle lithosphere of about 1000 K induces a negative buoyancy contrast
�ρT /ρ0 ≈ 4 %, for a coefficient of thermal expansion of 4 × 10−5 K−1. The relevant
parameter to characterize the density structure of the lithosphere is the buoyancy
number B = �ρc/�ρT , with typical values of about 0.6 and 0.25 for Archean and
Phanerozoic lithosphere, respectively. Because partial melting has dehydrated the
continental lithosphere, it should be more viscous than the underlying convecting
mantle (Kohlstedt, Evans & Mackwell 1995). The viscosity contrast may be as large
as two orders of magnitude (Hirth & Kohlstedt 1996).

The stability of continents also involves heat transport mechanisms. In order to
sustain the temperature difference of 1000 K across the mantle lithosphere, heat must
be supplied from below. The most likely mechanism is small-scale convection in a
thin basal boundary layer (Parsons & McKenzie 1978; Jaupart et al. 1998). Beneath
the oceans, heat flux decreases away from mid-ocean ridges, owing to the conductive
cooling of hot mantle that has risen toward the Earth’s surface, and then settles to
an almost constant value where oceanic crust is older than ∼100 Ma (Parsons &
Sclater 1977; Lister et al. 1990). This dependence of heat flux on age reflects an initial
phase of conductive cooling followed by convective breakdown of a thin thermal
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Figure 1. Initial temperature and density structures assumed in calculations of marginal
stability. Heat is conducted into the base of a fluid that is intrinsically denser by an amount
�ρ. The temperature at the base is warmer by �T1 than the fluid above it, across which a very
small temperature gradient G2 is assumed. We assume a linear gradient through the lower
layer, G1 = �T1/d . We also allow for different viscosities of the two layers.

boundary layer at the base of a layer stabilized by its low temperatures and its large
viscosity (e.g. Parsons & McKenzie 1978). Heat supplied by intermittent breakdown
of this thin boundary layer accounts for the steady-state thermal structure of old
oceanic lithosphere. This process has been reproduced in the laboratory in fluids with
strongly temperature-dependent viscosity (Davaille & Jaupart 1993, 1994). In these
experiments, the contrasting heat transport mechanisms, from conduction at the top
to small-scale convection at the base of the thermal boundary layer, are due only
to the large viscosity difference between top and bottom. In the case of continents,
an intrinsic buoyancy contrast may also contribute to contrasting heat transport
mechanisms, but to our knowledge, the feasibility of this mechanism has not been
ascertained in the laboratory.

1.2. Basic assumptions

We seek an understanding of how chemical differences between lithosphere and
asthenosphere affect the convective stability of the lithosphere and its evolution.
Thus, we seek an understanding of how an intrinsic density difference between two
layers affects convective instability of one of the layers, when the other is stable.
Because of the difficulties in setting initial conditions in the laboratory, we consider a
configuration opposite to that in the Earth: we impose a temperature gradient across
a chemically heavier, but more viscous bottom layer that underlies an intrinsically
lighter, nearly isothermal layer (figure 1). If sufficiently warm, the density of the lower
layer can be less than that of the upper layer, and hence the lower layer can become
unstable.
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For analysis of marginal stability, we simply assumed that the initial, uniform
temperature gradient across the two layers was very different (figure 1):

Tj (z) = −Gj (z − d), (1)

where j = 1, 2, with the subscript 1 referring to the lower layer z � d and 2 to the
upper layer z � d , and G1 � G2; d is the thickness of the basal high-density layer.
Thus, the temperature drop across the lower layer is �T1 = G1d . This temperature
structure includes a discontinuity in heat flux at the interface between the layers, and
in reality, a thermal boundary layer would develop there. As discussed below, we
contend that this boundary layer has only a minor effect on the thermal structure
and resulting flow, and we will use laboratory experiments to verify this.

Other difficulties render the simple structure shown in figure 1 as only approximate
for the laboratory experiments. Thermal steady state requires that heat be extracted
from the lower layer with a heat flux that is equal to the basal heat supply, and
the same amount of heat must be removed from the upper layer. In the laboratory,
we used a thick upper layer that was thermally insulated at the top; hence the
layer warmed gradually. As we show below, the heating rate was so small that it
allowed quasi-steady-state thermal conditions in the lower layer; the change of mean
temperature in the upper layer occurred over a time scale that was large compared
to the diffusive time scale of the lower layer. A similar set of conditions apply in the
Earth, where heat loss through the Earth’s surface only partially balances radiogenic
heat production in the crust and mantle, and this slow heat loss induces slow secular
cooling of the Earth’s interior.

Consider a thin fluid layer of thickness d with viscosity η1 below a large volume of
fluid with viscosity η2. In steady state, the heat flux conducted through this thin basal
layer across which the temperature drop is �T1, must equal the flux transported by
small-scale convection in the upper liquid, Q2:

Q2 = k
�T1

d
, (2)

where k is the coefficient of thermal conductivity, assumed to be the same in the
two layers. Following Howard (1966), we may assume that, in the thick upper fluid,
convection proceeds by intermittent breakdown of a thin thermal boundary layer.
Thus, the heat flux across the boundary layer is given by:

Q2 = Ck

(
αρg

κη2

)1/3

�T
4/3
2 , (3)

where C is a constant that takes a value of 0.21 ± 0.02 (Townsend 1964; Deardorff,
Willis & Lilly 1969). Here, α is the coefficient of thermal expansion, g is gravity, �T2

is the temperature drop across the thin boundary layer, κ is thermal diffusivity, and
η2 is the viscosity of the upper layer.

Defining �T = �T1 + �T2 and εi = �Ti/�T and setting Q2 in (2) and (3) equal
yields:

1 − ε2

ε
4/3
2

= C

(
αgρ�T d3

κη1

)1/3 (
η1

η2

)1/3

= CRa1/3

(
η1

η2

)1/3

, (4)

where Ra is a Rayleigh number. If η1/η2 � 1, then ε2 � 1, and the temperature
difference across the boundary layer is a small fraction of the total. Typical
conditions for the continental lithosphere and our laboratory experiments are such
that η1/η2 ≈ 102 and 102 <Ra < 103, implying that 0.16 � ε2 � 0.27. For simplicity,
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we shall neglect the thin unstable thermal boundary layer in our analysis and will
assess the validity of this assumption by a comparison between marginal stability
calculations and laboratory experiments.

2. Calculation of marginal stability
2.1. Procedure

As noted above, in the analysis of marginal stability, we ignore the thermal boundary
layer at the interface between the layers. The temperature drop across the lower layer
is �T1 = G1d . With the interface between the layers at z = d , the density within each
layer is given by:

ρ1(z) = ρ0[1 + αG1(z − d)] + �ρ (z � d), (5a)

ρ2(z) = ρ0[1 + αG2(z − d)] (d � z � d + D), (5b)

where D is the thickness of the less dense, nearly isothermal layer.
As we are interested in cases where the gradient across the upper layer is negligible,

we consider only cases in which |G1| � |G2|.
As is traditionally done (e.g. Chandrasekhar 1961; Le Bars & Davaille 2002) and

described more fully in Appendix A, we linearized the momentum and heat transfer
equations about a state of no motion and we assumed an incompressible fluid in the
equation of continuity. We find solutions, in the form of a sum of eigenfunctions, to
the linear differential equation governing flow within each layer, subject to harmonic
perturbations, and we assume that these perturbations grow exponentially with time,
est , with a growth rate factor s. To determine the critical Rayleigh number at the
threshold of instability, we followed standard procedure (Appendix A).

Six dimensionless numbers govern the solution for instability of flow with the
two-layered structure that we consider: the Rayleigh number defined in terms of the
parameters in layer 1

Ra1 =
αgρG1d

4

κη1

, (6)

the Prandtl number, which we treat as infinitely large and hence ignore; the buoyancy
number, B , which scales the intrinsic density difference, �ρ, to that due to thermal
expansion, ρ0α�T1 = ρ0αG1d:

B =
�ρ

ρ0α�T1

, (7)

and three ratios: of the thicknesses of the layers, D/d; of the viscosities of the
layers γ = η1/η2; and the temperature gradients across the layers, G2/G1. We are
not interested in the role of different temperature gradients in the upper layer, and
in Appendix B we show that for sufficiently small ratios G2/G1, results become
independent of G2. Thus, only four dimensionless numbers are important: Ra1, B , γ

and D/d .
The inclusion of an intrinsic difference in density between the layers allows the

growth rate to be complex: s = σ + iω. At marginal stability, the real part of the
growth rate must vanish (σ = 0), but the imaginary part, ω, which defines the angular
frequency of an oscillating flow, need not vanish. In addition to the critical Rayleigh
number, RaC , and the wavenumber of the perturbation, kC , for which Ra1 is a
minimum, we also find a corresponding angular frequency ωC . Thus, we seek the
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family of values of RaC , kC and ωC as functions of the buoyancy number B , the ratio
of viscosities γ , and the ratio of layer thicknesses D/d .

Our analysis complements several previous studies of convection with two
chemically different layers at Rayleigh numbers that were much larger than RaC

(e.g. Olson & Kincaid 1991; Tackley 1998; Gonnermann, Manga & Jellinek 2002;
Jellinek & Manga 2002, 2004; Namiki 2003; Namiki & Kurita 2003; Zhong & Hager
2003; McNamara & Zhong 2004a, b, 2005; Wenzel, Manga & Jellinek 2004). Most of
these studies focused on the entrainment of a dense basal layer for values of B > 0.5.
A few other studies have dealt with oscillatory instability in other configurations.
Zaranek & Parmentier (2004) considered a linearly varying intrinsic density across a
layer initially with a linear temperature profile. Hsui & Riahi (2001) considered linear
stability where chemical differences can induce oscillatory instability. Houseman &
Houseman (2006) analysed the instability of thickened crust overlying a mantle
lithosphere whose density depends on its thermal structure.

2.2. Test: Comparison with results of Currie (1967)

To test our solutions, we compare results with those of Currie (1967), who analysed
the stability of a homogeneous layer of fluid heated at its base over a finite time, and
hence affecting only the lowermost part of the layer. He used the same temperature
profile as that of figure 1 and hence we solve the same problem if we set B = 0.
Currie (1967) intended to determine the onset of instability in a fluid that is suddenly
heated at its base by the imposition of a constant temperature there. In such thermal
conditions, the vertical temperature profile before instability has marked curvature
and it is not clear that the approximation of a linear gradient over a thin sub-layer
is appropriate. As discussed above and as we shall see in the laboratory experiments,
we are dealing with a lower layer that is denser than the overlying fluid, which allows
thermal steady state in certain conditions. Here, we are not interested in the validity
of Currie’s approximation for the heating of a homogeneous fluid layer and merely
use his results to check the accuracy of our calculations in the limit of B =0.

Currie (1967) reported that in the limit of d � D, the critical Rayleigh number
dropped to 32 (this value was obtained numerically to two significant digits), much
smaller than the values associated with Rayleigh–Bénard convection. We obtained the
same result (figure 2). In fact, for γ > 1, RaC decreases further to values as small as 28.
Qualitatively this can be understood as analogous to Rayleigh–Bénard convection, in
which the critical Rayleigh number is smallest for free-slip boundaries, intermediate
for mixed boundaries, and largest for no-slip boundaries (e.g. Pellew & Southwell
1940); as γ increases, the interface becomes effectively stress free. Neither RaC nor
k′

C = kCd depend strongly on γ , provided it is at least 10. However, figure 2 reveals, as
Currie (1967) also found, that for γ = 1, as the ratio of thicknesses D/d increases, the
value of k′

C decreases and approaches zero. The wavenumber for maximum growth
rate, therefore, depends on the thickness of the upper, nearly isothermal layer. We
solved the problem with a finite gradient in the upper layer instead of with a zero
gradient in an infinite upper layer because we could not find a solution for γ = 1 and
an infinite upper layer, presumably because it requires that k′

C → 0.

2.3. Influence of the buoyancy number on the conditions for marginal stability

Our analysis follows that of Le Bars & Davaille (2002, 2004), who considered a pair of
layers with two intrinsically different densities and initially with a uniform temperature
profile across the pair of layers, like that for marginal stability of Rayleigh–Bénard
convection. We observed phenomena qualitatively similar to what they and Richter &
Johnson (1974) noted (figure 3). First, three regions near the threshold of instability



440 C. Jaupart, P. Molnar and E. Cottrell

20

30

40

50

60

70

80(a)

(b)

100 101 102 103 104

0

0.2

0.4

0.6

0.8

1.0

R
a c

γ = 1

100 101 102 103 104

k′ C

D/d

10

100

1000

Figure 2. Dependences of (a) the critical Rayleigh number RaC and (b) the corresponding
dimensionless wavenumber k′

C on the ratio of the thicknesses of the layers D/d , for B = 0 and
for different ratios of viscosities, γ . Note that for γ = 1, and sufficiently large values of D/d ,
RaC → 32, as Currie (1967) reported, but k′

C → 0. For γ � 10, RaC → 28, and k′
C remains

finite.

exist. By definition, for low Rayleigh number (Ra1 <Rac), both layers are stable. For
low B (< ∼0.5) and Ra1 > Rac, an oscillatory instability develops, such that laterally
harmonic perturbations to the interface between the layers rise and fall periodically
in time. For large B (> ∼0.5) and Ra1 >Rac, convection can occur within the lower
layer with negligible displacement of the interface between the layers. The critical
Rayleigh number depends strongly on B for B < ∼0.5; the (dimensionless) angular
frequency ω′

C = ωCη1/ρ0α�T1gd varies from zero at B = 0 (there is no oscillatory
instability without a finite intrinsic density difference) to a maximum and again
approaches zero as B approaches ∼0.5 (Le Bars & Davaille 2002; Cottrell et al.
2004). For an oscillatory instability (B < ∼0.5), the dimensionless wavenumber, k′

C , of
an infinitesimal perturbation is smaller than that for which convection is confined to
the bottom layer (B > ∼0.5).
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Figure 3. Dependences of (a) the critical Rayleigh number RaC , (b) the dimensionless
wavenumber k′

C at which RaC is a minimum, and (c) the corresponding dimensionless
angular frequency of the oscillatory instability ω′

C on the buoyancy number B , for γ = 10
and for different values D/d . Note that three regimes exist: a stable regime where Ra <RaC ,
oscillatory convective instability for B < ∼0.5, and layered convection within the lower layer
for B > ∼0.4. (Layered convection is a form of Rayleigh–Bénard convection, but with a top
boundary condition that is neither stress-free nor no-slip.)

We made calculations for layers with a variety of viscosity ratios, γ , and for different
ratios of layer thicknesses. Several features of the various dependences of RaC , k′

C

and ω′
C on B (figures 3 and 4) differ from what Le Bars & Davaille observed. For

large γ ( � 10), for 0 <B < ∼0.27, both k′
C and ω′

C are markedly smaller than they are
for ∼0.3 <B < 0.5. As the ratio of the layers, D/d increases, the dependence of all of
RaC , k′

C and ω′
C on B differ little. Similarly, for γ =10 or 100, the dependence of all

of RaC , k′
C and ω′

C on B are virtually identical (figure 4). Perhaps, most important,
the very different values of k′

C and ω′
C for values of B > ∼0.3, and B < ∼0.25, and the
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Figure 4. Dependences of (a) the critical Rayleigh number RaC , (b) the dimensionless
wavenumber k′

C at which Ra1 is a minimum, and (c) the corresponding dimensionless angular
frequency of the oscillatory instability ω′

C on the buoyancy number B , for D/d = 19 and for
different values γ . As in figure 3, three regimes exist, but notice that the critical Rayleigh
number for the stable regime depends on γ . It is smaller as γ increases, because in effect the
top boundary of the lower layer becomes increasingly like a free boundary as γ increases. For
large γ , RaC approaches 1100.65, appropriate for Rayleigh–Bénard convection with one free
and one no-slip boundary (Pellew & Southwell 1940). For large B , where layered convection
would occur, extrapolations of curves to higher Rayleigh numbers are shown with finer dashed
lines.

rapid increase in RaC for 0.25 <B < 0.30 suggests that two different modes, or flow
patterns, develop for the two ranges of the buoyancy number B .

2.4. Different modes: analysis of eigenfunctions

To ascertain whether different modes exist, we calculated appropriate linear combina-
tions of eigenfunctions that describe the vertical component of velocity for different
values of B , γ and D/d . Because of their arbitrary scaling, we normalized solutions
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of the (dimensionless) vertical component of velocity so that all equal one at z = d ,
the interface between the two layers.

For all cases of an oscillatory convective instability, if fluid rises or subsides at
the interface it does so throughout the lower layer (figure 5). For the small values
of B (< ∼0.25), eigenfunctions increase monotonically from the base of the lower
layer to the interface, and the z-dependence of vertical speed is approximately linear
with height in the layer. Thus, where the interface rises, the material in the layer
below stretches vertically and must contract horizontally to conserve mass. Rising
parts of the lower layer are fed by horizontal flow within and throughout the lower
layer. (Divergent flow accommodates subsiding flow where the interface is initially
perturbed downward.)

For larger values of B ( > ∼0.3), vertical speed reaches a maximum within the
upper part of the lower layer, not at the interface (figure 5). Accordingly, although
the interface rises, near the top of the lower layer, fluid is compressed vertically:
∂w/∂z < 0. Conservation of mass requires that ∂u/∂x > 0; hence horizontal flow in
the upper part of the lower layer is divergent and weakens the upward flow, rather
than feeding it. Because all eigenfunctions are scaled to the same vertical speed at the
interface, the increasingly divergent flow there with increased B causes a proportional
increase in downward flow in the upper layer near the interface in figure 5. For this
range of values of B , the instability develops because the hot basal part of the lower
layer intrudes into the cooler upper part of that layer, which is buoyantly stabilized
by the chemical difference.

The upper layer, with its negligibly small temperature gradient, should be convec-
tively stable, and therefore, flow within it must be forced by flow in the lower layer,
if assisted by perturbations to the temperature structure near the interface. To test
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Figure 6. Calculations of w′, the vertical component of velocity, at the threshold of instability
for two values of B and for γ = 1, 10 and 100, for D/d = 19. Note that values within the lower
layer (z′ < 1) are virtually independent of γ , but in the upper layer they scale with γ . Flow in
the upper layer is forced by that in the lower layer, and the lower the viscosity of the upper
layer (larger γ ), the faster the fluid moves there.

this, we calculated eigenfunctions for the same configuration but with γ = 1, γ = 10
and γ = 100. As shown for each of two values of B (figure 6), flow in the lower
layer is virtually identical and independent of γ . By contrast, in the upper layer, the
upward speed scales with γ , so that for smaller viscosity in the upper layer, flow is
proportionally faster. Hence, flow within the lower layer is nearly insensitive to the
properties of the upper layer, at least for γ > 1.

For small B , rising flow in the lower layer induces rising flow throughout much of
the upper layer (figure 5); the positive buoyancy in both the lower layer and near
the base of the upper layer, owing to the temperature perturbation, overwhelms the
small chemically induced negative buoyancy. The flow throughout the upper layer
must be different for different thicknesses of that layer. Thus, greater confinement of
that flow by thinner upper layers will force maximum growth rates to occur at larger
wavenumber and with higher frequency. For large B , however, slightly above the
interface, flow reverses, and downward flow occurs above an upwardly perturbed
interface (and correspondingly, upward flow overlies a downwardly perturbed
interface). In all cases where flow reverses with height, a maximum vertical speed is
reached either within the lower layer for the largest values of B , or just above the
interface for intermediate values of B . As noted above, horizontal flow above the
locus of maximum speed is divergent.



Instability of a chemically dense layer heated from below 445

The analysis of eigenfunctions shows that for small B (< ∼0.25), flow within the
lower layer is simple, with monotonically increasing upward speed within the layer
and rising flow above it. For large B (> ∼0.3), however, the upward speed reaches a
maximum within the lower layer, and the top part of that layer and the bottom of
the upper layer stretch horizontally to accommodate flow from below.

3. Toward a simple physical understanding of the two modes of oscillatory flow
3.1. Dependence of the pressure field and flow on buoyancy number B

In the oscillatory mode, material from the hot chemically denser lower layer
penetrates the colder, but chemically lighter upper layer, and to do so, its average
density, �ρT = ρα�T1/2, must be less than that of overlying material: �ρT >�ρC , or
B < ∼1/2, a result confirmed by calculations shown in figures 3 and 4.

To obtain a scaling relationship between RaC and B , we restrict discussion to two
dimensions. The lower layer is perturbed by a harmonic deflection of the interface
with small amplitude δ(x) = δ sin(kx), and temperature increases linearly across the
lower layer between its base at z = 0 and its top at z = d + δ (figure 1):

∂T

∂z
=

�T1

d + δ
(0 � z � d + δ). (8)

In the limit of large viscosity contrast, the upper fluid may be considered inviscid,
such that it exerts no shear tractions on the lower layer and such that its pressure
field is hydrostatic. For small deformation δ with wavelength larger than the layer
thickness, the vertical component of velocity should be small and should contribute
a negligible viscous stress in the vertical momentum balance. Thus, we consider the
hydrostatic limit, in which pressure as a function of height z in a column is given by

P (x, z) = ρ0g(D − δ)+(ρ0 + �ρ)g(δ + d − z)− 1
2
ρ0α�T1g

[
z2

d + δ
− 2z + d + δ

]
. (9)

Using the definition of B from (7) and taking the limit of small δ, we obtain:

∂P

∂x
=

ρ0α�T1g

2

[
z2

d2
+ 2B − 1

]
∂δ

∂x
. (10)

At z =0:
∂P

∂x
=

ρ0α�T1g

2
(2B − 1)

∂δ

∂x
. (11)

B must be smaller than 1/2 for the hottest, bottom part of the layer to be unstable,
as predicted by the very simple bulk buoyancy argument.

If B < 1/2, equation (10) shows that the horizontal pressure gradient changes sign
at the level zc:

zc/d =
√

1 − 2B. (12)

Near the top of the lower layer, where z > zc, the signs of ∂P/∂x and ∂δ/∂x are
the same, showing that the pressure gradient opposes the deflection of the interface.
This is easily understood by considering that fluid at the top of the chemically
dense layer consists of relatively dense material at temperatures close to those in the
overlying fluid. In this part of the denser layer, therefore, the dominant contribution to
buoyancy is composition, such that the fluid is negatively buoyant, and this negative
buoyancy exerts a pressure gradient that retards the horizontally convergent flow near
the interface. In contrast, near the bottom of the chemically denser layer, for z < zc,
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lateral temperature differences dominate the contribution of chemical differences to
the pressure gradient, and the signs of ∂P/∂x and ∂δ/∂x are opposite. The pressure
gradient due to deflection of the interface, therefore, drives flow that enhances the
deflection. This flow sets up the oscillatory instability.

3.2. Critical Rayleigh number as a function of buoyancy number for B � 11/40

Beginning with momentum balance, we may solve for an approximation to the flow
field. The horizontal component of this balance is expressed by:

0 = −∂P

∂x
+ η1∇2u ≈ −∂P

∂x
+ η1

∂2u

∂z2
. (13)

Integrating (13) twice, using (11) and the boundary conditions that u =0 at z = 0
and that at z = d , the shear stress vanishes, and therefore, ∂u/∂z =0, yields for the
horizontal component of velocity:

u =
ρ0αg�T1

4η1

∂δ

∂x
z

[
z3 − 4d3

6d2
+ (2B − 1)(z − 2d)

]
. (14)

Oscillatory movement requires a restoring effect to act against the initial perturbation,
which, for viscous flow with no inertia, must be diffusion of heat. Such diffusion
smoothes horizontal temperature differences and hence decreases the driving pressure
gradient. Thus, at the threshold of instability, the time scale for diffusion matches that
for deformation of the interface. We use the equation of continuity to estimate w from
(14). Evaluating it at z = d (the interface), with the approximation that ∂2δ/∂x2 = δ/λ2,
where λ is wavelength, yields

w =
ραg�T1

120η1

d3

λ2
δ(11 − 40B). (15)

Finally, recognizing that w = ∂δ/∂t , a sensible time scale τ can be expressed as
τ = δ−1∂δ/∂t . Equating τ to the diffusive time scale, λ2/κ:

ραg�T1

120η1

d3

λ2
(11 − 40B) ∼ κ

λ2
, (16)

which implies, ignoring the factor of 120, that

RaC =
ραg�T1d

3

η1κ
∝ (11 − 40B)−1. (17)

This predicts that the critical Rayleigh number RaC increases with increasing B , as
it does in the numerical calculations (figure 7). Moreover, this equation breaks down
near B = 11/40 = 0.275, where the calculations (figures 3 and 4) suggest a change in
regime.

3.3. Critical Rayleigh number as a function of buoyancy number for B � 11/40

For B > 11/40, the balance of flow is more complicated than for small B . As the
analysis of eigenfunctions shows, counterflow occurs within the lower layer near the
interface between the two different layers. Let us consider a perturbation to the initial
temperature structure that varies across the lower layer similar to that in (8), but that
also is greater in the lower part of the layer than in the upper part. This approach
is motivated by the recognition that for ∼1/4 <B < ∼1/2, only the bottom of the
chemically heavy layer is buoyant, and perturbations to its stratification might grow
by penetration of this part of the layer into the overlying warmer, but chemically
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Figure 7. Comparison of scaling relationships derived in § 3.2 and 3.3 for RaC as a function
of B . That for B < ∼0.25 (short-dashed line) was obtained from (17) with a constant of
proportionality set to 300. It exhibits the same upward curvature as do the calculated values
and breaks down at B =11/40 where the calculations indicate a change of regime (figure 4).
That for B > ∼0.25 (long dashed line) was obtained from (22) with a scaling factor of 33 and
a value of 4 for parameter r . This second scaling relation matches the steep dependence of
RaC on B for 0.3 <B < 0.38, but fails to fit the larger range of B . D/d = 19; γ = 100.

similar part. To make the perturbation to the temperature structure of the lower layer
greater near the bottom than the top of the layer, we consider a perturbation that
includes non-uniform straining of the lower layer. To implement this, we let δ in (8)
depend on height above the bottom, z:

δ(z) = δ
[
a + b

z

d

]
. (18)

Physically, we can interpret (18) as suggesting that the temperature field is strained
so that the lower part of the bottom layer is stretched more than the upper part, as
can be seen in the calculations of eigenfunctions (figure 5). Following the approach
that led to (15), we now obtain:

w =
ρ0αg�T1

η1

d3

λ2
δ

[
a

(
11

40
− B

)
+ b

(
13

120
− B

)]
. (19)

To compare all conditions, we should assume that at z = d , δ in (15) is the same
as it is in (19), and hence that a + b = 1. As a second condition to fix a and b,
we assume that at below some fraction, r , of the level where pressure reverses sign,
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zc = d
√

1 − 2B , the temperature profile would be perturbed positively and above that
height, it would be perturbed negatively:

a + rb
√

1 − 2B = 0. (20)

Near the bottom where z < rd
√

1 − 2B , the perturbation to the temperature structure
is large and makes these levels especially buoyant, but near the top of the lower layer
where z > rd

√
1 − 2B , the temperature structure is compressed, and these levels are

made less buoyant than for uniform stretching across the layer as in (8). Thus,

a =
r
√

1 − 2B

r
√

1 − 2B − 1
, b =

−1

r
√

1 − 2B − 1
. (21)

By analogy with the analysis that led to (17), for B > ∼1/4, (19) leads to

RaC ∝ r
√

1 − 2B − 1

r
√

1 − 2B

(
11

40
− B

)
−

(
13

120
− B

) . (22)

As shown in figure 7, equation (22) can be made to fit part of the curve for RaC as a
function of B , but not that for the largest values of B . The simple assumption for the
perturbation in (18) is inadequate. At the same time, the analysis of eigenfunctions
above (figure 5) suggests that flow occurs by selecting a velocity field for which the
highest speed is not at the top of the basal layer, but within it, so that flow responds
to a perturbation of temperature that is not uniform across the layer. The range of
values of B over which (22) provides an adequate match in figure 7 corroborates the
essence of the assumed nonlinear temperature perturbation.

3.4. Buoyancy frequency as a function of buoyancy number

The buoyancy of the lower layer, or the basal part of it, drives upward motion of the
hot bottom layer against the chemical buoyancy of the overlying fluid, but ultimately
diffusive loss of heat overwhelms that balance. Unlike the atmosphere or ocean, where
inertia balances buoyancy, only diffusion can set the time scale for that balance.

The buoyancy of the heated, but intrinsically denser, bottom layer is the integral
of density over the thickness of the layer:

ραg�T1d

2
− �ρgd. (23)

Material rises when the expression in (23) is positive. We may treat �T1/2 as the
mean temperature anomaly in the layer. As a blob with mean temperature anomaly
�T1/2 rises into the overlying fluid, diffusion of heat into the overlying fluid will cool
it, and eventually the blob will lose its buoyancy.

Following Le Bars & Davaille (2004), we may approximate that time dependence
by a factor exp(−t/τ ), where for the moment we leave τ unspecified. We may rewrite
(23) as a condition on t; at t = t0, ρα�T1 exp(−t0/τ ) − 2�ρ = 0. Using the definition
of B:

t0 = −τ ln(2B). (24)

Assuming that the diffusive time scale depends on the wavelength of the perturbation,
λ, we have τ ∼ λ2/κ . Non-dimensionalizing time using the Stokes speed and distance
by the thickness of the layer and letting ωC ∼ 1/t0, (24) becomes:

ω′
C ∼ − k′2

Ra1 ln(2B)
. (25)
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Figure 8. Comparison of scaling relationships derived on § 3.4 for ω′
C as a function of B .

Those for both B < ∼0.275 (short-dashed line) and B > ∼0.275 (long dashed line) show similar
forms, if not precise matches. D/d = 19; γ = 100.

We obtain a crude fit of (25) to calculated values of ω′
C vs. B for 0 � B � 1/4

(figure 8) by choosing a coefficient of proportionality of 4.5 and using the calculated
values of k′

C , i.e. ω′
C = −4.5k′2

C/Ra1 ln(2B).
For B > ∼1/4, instead of considering the buoyancy of the entire layer, we assume

that the bottom, buoyant part of the chemically distinct layer must be buoyant
enough to penetrate into the upper, negatively buoyant part of the layer. Material
in the depth range Bd <z � d is negatively buoyant, but material in the depth range
z <Bd is buoyant with respect to the material in the overlying layer. If the buoyancy
of the lower part of the layer is impeded primarily by the negative buoyancy of its
upper part, we have, by analogy with (23):∫ Bd

0

(
ρα�T1

d
[z − d] − �ρ

)
dz >

∫ d

Bd

(
ρα�T1

d
[z − d] − �ρ

)
dz. (26)

This yields:

ρα�T1

[
B2 − 1

2

]
− �ρ(1 − B) > ρα�T1

[
−B2

2

]
− �ρB. (27)

Again, allowing for an exponentially decaying time dependence of the temperature-
dependent part and using the definition of B , (27) becomes:

(1 − 2B2) exp

(
− t0

τ

)
= 2B(1 − 2B). (28)
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Allowing ω ∼ 1/t0, assuming τ ∼ λ2/κ , and non-dimensionalizing yields:

ω′ ∼ k′2

Ra1 ln

[
2B (1 − 2B)

1 − 2B2

] . (29)

A fit of (29) to calculated values of ω′
C vs. B for B > ∼1/4 with the same coefficient

of proportionality of 4.5 fits the observed dependence for a portion of this range of
B (figure 8), if less well than (25) fits the lower range of B .

4. Laboratory experiments
4.1. Laboratory set-up.

To vary the viscosity and density contrasts between the two fluids, we added aqueous
solutions of ammonium chloride salt and hydroxyethyl cellulose to water. The former
allowed adjustment of the intrinsic density contrast and the latter was used to set the
viscosities of the two fluid layers (Tait & Jaupart 1989). For all of the experiments
discussed here, we used a rotating viscometer to measure the viscosity with an accuracy
of about 10 %. For the small deformation rates of these experiments, such solutions
behave as Newtonian fluids. Over the temperature range of this study, viscosity varied
weakly with temperature, typically by 40 % for a temperature difference of 40 K, and
most of our experiments explored a narrower range of temperature. We used the
viscosity value for the average temperature, as is appropriate in variable viscosity
fluids (White 1988). We measured the equation of state (density as a function of
temperature) with a U-tube to an accuracy of 10−5.

The walls of the experimental tank, 0.3 m × 0.3 m and 0.3 m high, are made of thick
(30 mm) Plexiglas plates, which ensured thermal insulation for the duration of an
experiment. The tank was set on a copper plate with internal circuitry connected to
a bath whose temperature remained constant with spatial and temporal fluctuations
smaller than 0.1 ◦C. The top of the upper liquid was a free surface in contact with
air below a thick Plexiglas plate, which insulated the interior from the laboratory
environment. We measured vertical temperature profiles using a thin thermocouple
array. Temperatures were determined with an accuracy of 0.025 K and recorded every
30 s or 60 s, depending on the experiment.

All experiments followed the same protocol. The dense lower-layer liquid, coloured
using food dye, was introduced at the base of the other intrinsically lighter fluid
and left to spread horizontally until the interface was flat. The dye diffused across
the interface into a very thin chemical boundary layer (typically one mm thick or
less). Our greatest challenge was to generate a two-layer system with viscous miscible
solutions and very small density differences (typically less than 1 %) without any
mixing between the two liquids before they were heated. At time t =0, the base plate
was switched to a hot water bath and its temperature rapidly rose to a prescribed
value.

The experimental values of the Rayleigh and buoyancy numbers are calculated with
the total temperature difference �T because this was externally imposed. Because of
the uncertainties in the physical properties of the fluids, we cannot test the theoretical
predictions with great accuracy. Our goal was to establish the existence, in the relevant
parameter ranges, of the two different types of instability (oscillatory and layered) and
of the stable regime such that the lower layer was in thermal conductive equilibrium
with heat flux extracted by small-scale convection at the interface. We carried out a
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Exp. no Ra† B‡ η1/η2 Ra2 Comments

GT01 551 0.15 5500 7.5 × 108 Oscillatory
GT03 135 0.14 5500 8.7 × 108 Oscillatory
GT25 564 0.46 5800 1.1 × 109 Oscillatory (barely)

LIZ01 1458 0.48 6600 3.5 × 108 Unstable (?)
LIZ03 142 0.10 6600 4.5 × 108 Oscillatory
LIZ15 376 0.38 1900 1.0 × 109 Oscillatory
LIZ16 227 0.94 2200 2.6 × 108 Stable
LIZ18 1508 0.72 690 5.2 × 108 Layered

LIT02 711 0.54 71 3.4 × 106 Stable
LIT05 1495 0.50 83 4.6 × 106 Layered
LIT06 1178 0.50 86 2.9 × 106 Oscillatory
LIT07 842 0.48 98 4.5 × 106 Stable
LIT08 526 0.63 65 2.9 × 106 Stable
LIT09 677 0.50 65 4.6 × 106 Oscillatory (barely)
LIT10 1209 0.67 65 2.8 × 105 Layered (barely)
LIT11 1027 0.56 69 6.4 × 106 Oscillatory (barely)
LIT12 1358 0.55 69 2.6 × 106 Layered
LIT13 1030 0.51 291 7.4 × 106 Oscillatory (barely)
LIT14 801 0.50 291 1.7 × 107 Stable
LIT15 1057 0.36 265 1.2 × 107 Oscillatory
LIT16 779 0.44 265 1.0 × 107 Oscillatory
LIT18 640 0.37 287 1.7 × 107 Oscillatory
LIT19 333 0.37 287 1.7 × 107 Oscillatory (barely)
LIT20 268 0.44 262 1.1 × 107 Stable
LIT22 1202 0.57 13 1.5 × 106 Unstable (?)
LIT23 1062 0.55 1500 4.5 × 107 Stable
LIT26 1230 0.30 1150 4.5 × 107 Oscillatory

†Values of the Rayleigh number are known with 10% accuracy.
‡Experimental uncertainty on values of the buoyancy number is less than 1%.

Table 1. Experiments.

large number of experiments to investigate the behaviour of the layered system over
a wide range of parameters, but here, we focus on a restricted set of 27 experiments
near the threshold of unstable flow (table 1). Also, two experiments far from this
threshold will be used to illustrate the two basic flow patterns. We restricted the
investigation to cases in which the lower liquid is the more viscous, largely because
this configuration corresponds to the geological case motivating our study, but also
because this makes creating the initial layered system without mixing much easier.
Small Rayleigh numbers (Ra < ∼100) are very difficult to achieve in the laboratory.
They demand very thin layers and are relevant at very small buoyancy numbers, two
conditions that require inordinately long times for the establishment of a flat interface
between the two fluids. These limitations make the study of the stability curve for
values of B < 11/40 difficult. For such small values of the buoyancy number, the
critical Rayleigh number is also small, such that ε2 > 0.3 in (4), implying that the
convective boundary layer at the interface between the two fluids accounts for a large
fraction of the total temperature contrast. In these cases, the idealized temperature
structure used in our analysis (figure 1) may be too simplistic. This range of B values,
however, is not relevant to the continental lithosphere, as we will show later.
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Figure 9. Dimensionless temperature (T/�T ) as a function of dimensionless time (t ′ = tκ/d2)
at various levels in the tank for experiment LIT20 (table 1). In this experiment at low Rayleigh
number (Ra = 268), the lower layer was stable. B = 0.44; η1/η2 = 260. Note that the interface
temperature (at z′ =1.0) begins to oscillate at a dimensionless time of about 0.25, which reflects
the onset of small-scale convection in the thin thermal boundary layer that has developed in
the upper layer made of low-viscosity fluid. The temperature grows slowly at all depths, as
both fluids warm slowly. Note the almost linear temperature increase at all heights for times
larger than about 1.4, which reflects the slow thermal evolution.

We present data from the experiments in dimensionless form. For discussion of the
experiments, scaling time by the diffusive time scale for the lower layer (d2/κ) allows
proper evaluation of transients and of the time to reach thermal quasi-steady-state
conditions in the lower layer. Perturbations to the thermal structure of the lower layer
decay over time-spans shorter than this time scale; as shown below, a dimensionless
time of about 1/4 elapses before a change of basal temperature propagates across the
lower layer.

4.2. A stable layer and quasi steady-state thermal structure

For small values of Ra, a stable state should persist with the temperature difference
across the lower layer, and the associated conductive heat flux, sustained by small-
scale convection that develops at the interface between the two layers. Because we
start heating the base of the lower layer at time t =0, a finite time must elapse for a
steady state to be reached. Heat diffuses through the dense lower layer and reaches
the interface between the fluids, z′ = z/d = 1, at t ′ ≈ 0.25, when the rate of warming
changes (figure 9). For the case in figure 9, LIT20 in table 1, carried out far below the
stability curve (Ra = 268, B = 0.44), the temperature of the interface underwent small
fluctuations superimposed on a gradual increase. We saw small wisps of coloured fluid
(due to diffusion of the colouring agent into the upper layer) entrained by narrow
plumes rising to the top of the tank. These plumes grew from instabilities of the thin
thermal boundary layer that developed above the interface in the low-viscosity upper
liquid. Such convective motion balances the heat flux into the lower layer, but because
of the insulated top boundary, the whole upper layer must gradually warm (figure 9).
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Figure 10. Dimensionless temperature as a function of dimensionless time for an experiment
(LIT14, table 1) at Rayleigh number Ra = 801, close to the threshold of instability.
B = 0.50; η1/η2 = 291. As for experiment LIT20 (figure 9), the lower layer remained stable,
and small-scale convection at the interface allowed a quasi-steady-state thermal structure in
the lower layer.

For t ′ < ∼0.25, temperatures at the interface initially grow proportionally to
√

t
′
, as

they should if controlled by diffusion. Later, temperatures adjust to an almost linear
trend, as expected for the heating of the well-mixed upper layer at a nearly constant
rate.

Because of the insulating top boundary, the temperature structure in our experi-
ments cannot reach steady state. With the large volume of upper liquid, the time
scale for its evolution is long compared to the diffusive time scale for the thin lower
layer. For the experiment in figure 9, once small-scale convection has set in at the
interface, the temperature difference between that in the upper layer and that at the
base of the lower layer changes by only 10 % over a dimensionless elapsed time
of 1. Remembering that it takes a dimensionless time of about 0.5 for a layer to
reach equilibrium in diffusion with fixed temperature boundary conditions, we may
therefore assume that the lower layer thermal structure is nearly steady state, such
that the rate with which heat is extracted from the layer by small-scale convection
is balanced by conductive heat transport through the layer. The Earth’s lithosphere
evolves similarly; the convecting mantle heats it from below as it cools at a low
secular rate of about 100 KGyr−1.

The same features as shown in figure 9 can be observed in an experiment carried
out near the threshold of instability at an almost identical buoyancy number, B = 0.50
(LIT14, Ra = 801; figure 10). Again, for t ′ > ∼0.25, small-scale convection generated
temperature fluctuations at the interface. Such fluctuations, seen best just above the
interface at z′ = 1.6, propagated downward by diffusion into the lower liquid, but
were damped with increasing distance from the interface. Their magnitudes are much
smaller at z′ = 0.61 and virtually absent at z′ = 0.23. The temporal evolution of vertical
temperature profiles for the same experiment (figure 11) shows that at t ′ = 0.5, an
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Figure 11. Dimensionless temperature as a function of dimensionless height above base in
experiment LIT14 (table 1). Ra = 801; B = 0.50; η1/η2 = 291. The temperature gradient in
the lower layer (between z′ = 0 and z′ = 1) is almost constant, and this gradient changes little
between t ′ =0.5 and t ′ = 1.0. Note the difference with the early profile at t ′ = 0.07, which has
significant curvature.

almost linear temperature profile developed through the lower layer, corresponding
to near equilibrium with the slowly varying heat flux due to small-scale convection
at the interface. The difference between such a fully developed thermal structure and
a transient one can be assessed by comparing the profiles for t ′ = 0.07, which shows
marked curvature, with those for t ′ = 0.5 and t ′ = 1.0. Moreover, the two profiles at
t ′ = 0.5 and t ′ = 1.0 differ little and closely match the idealized profile used in the
marginal stability analysis (figure 1). We note that, in the fully developed regime at
t ′ = 0.5, the temperature difference across the unstable boundary layer at the top of
the lower layer is about 0.2, in agreement with the heat balance arguments developed
above (equation (4)).

4.3. Flow regimes

For Rayleigh numbers sufficiently large, convection manifested itself either by
alternating growth and decay of perturbations to the interface or by steady convection
in the lower layer that deformed the interface. As shown by the analysis of marginal
stability, which flow pattern occurred depends on the buoyancy number B and the
critical Rayleigh number depends on its value.

At sufficiently low buoyancy number, domes and basins developed at the interface,
and they rose and fell as an oscillating instability (figure 12). Upwelling flow in the
lower fluid fed the domes as they grew, rising to variable heights depending on the
Rayleigh number: the larger the Rayleigh number, the higher they rose. Eventually
the intrinsically denser lower fluid in the domes equilibrated thermally with the
surrounding fluid of the upper layer, and the domes fell back down. (At Rayleigh
numbers several times the critical Rayleigh number, domes rose to the surface of the
upper fluid and mixed with that layer by entraining the upper liquid as they fell back
down. We will discuss this regime elsewhere.)



Instability of a chemically dense layer heated from below 455

d

t′ = 0

t′ = 0.16

t′ = 0.18

Figure 12. Photographs showing oscillatory convection during experiment LIZ12 (Ra = 5.0 ×
103, B = 0.41, γ = 2.3 × 103) at three dimensionless times t ′ = 0, 0.16 and 0.18. In this experiment
far from the stability threshold, the upwellings rise to large heights compared to the initial
layer thickness d .
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Figure 13. Dimensionless temperature as a function of dimensionless time for experiment
LIT06 (table 1); large variations of temperature within the lower layer (0 <z′ � 1.0) corroborate
oscillatory convection that we observed visually. The Rayleigh number Ra =1178 for this
experiment at B = 0.50 is larger than the critical Rayleigh number (RaC = 670). η1/η2 = 86.
The interface underwent large amplitude oscillations reaching heights dm/d =2.2.

This oscillatory flow leads to marked temperature oscillations throughout the tank,
including the deep levels in the lower layer during the cycle of rising plumes and
their collapse (figure 13). Compared with the data of figure 10, for which Ra =801
and B = 0.50, those in figure 13, with a higher Rayleigh number Ra = 1178 and
identical buoyancy number B = 0.50, show marked fluctuations in temperature. We
observed this oscillatory convection regime at very small values of the Rayleigh
number (Ra = 135, table 1) for the lower layer when the buoyancy number is small
(B < 0.3), but for reasons given above, we could not run experiments at smaller
Rayleigh numbers.

At large values of the buoyancy number, B > ∼0.5, we observed a stable regime in
which convection occurred in the lower layer, sustained by the heat flux across the
interface. The interface developed a regular ‘egg-box’ shape with an easily measured
characteristic wavelength (figure 14). For such cases, a steady convection regime
developed, such that temperatures in the lower layer did not exhibit the marked
oscillations of the oscillatory regime. The interface maintained its deformed shape.
The ‘layered’ regime requires Ra > 1000, in contrast to the oscillatory regime and the
planform of convection was hexagonal. Temperature recordings for an experiment
in this regime are shown in figure 15 (Ra = 1358, B = 0.55, LIT12, table 1). In this
experiment, the onset of small-scale convection was well-marked at t ′ = 0.23 as the
upper layer began to heat up. The interface started to deform at t ′ = 0.26 and a
fully-developed ‘egg-box’ interface was established at t ′ ≈ 0.36 with domes that were
twice as tall as the initial lower-layer thickness. In this case, the instability barely
perturbed temperatures in the lower layer, in marked contrast to what happens in the
oscillatory regime (figure 13).
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t′ = 0.78

Figure 14. Photograph of experiment LIZ19 (Ra = 1.6 × 104, B = 0.72 and γ = 7.5 × 102),
undergoing layered convection at t ′ = 0.78. The lower layer convects, and the interface deforms
in response to that flow, but the large density of the lower layer prevents oscillatory flow.
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Figure 15. Dimensionless temperature as a function of dimensionless time for experiment
LIT12 in the layered regime (table 1). These measurements can be best appreciated by
comparing them to those for experiment LIT06 in figure 13, which correspond to similar
values of the Rayleigh number and viscosity contrast and to a lower value of B = 0.50 (instead
of 0.55 for experiment LIT12). Ra =1358; B = 0.55; η1/η2 = 69. The onset of small-scale
convection is pronounced at t ′ = 0.23 as temperatures near the top of the upper layer begin
to rise. The interface between the two fluid layers started deforming at t ′ = 0.25. At t ′ = 0.36,
the interface reached a stable configuration with large-amplitude deformation reaching heights
dm/d =2.1, almost as large as in experiment LIT06 shown in figure 13. Yet, there was no
marked change in the evolution of temperatures in the upper layer, in contrast to what
occurred in experiment LIT06.

One potentially important factor is the influence of sidewalls on the flow field
which is unaccounted for in the stability analysis. In the experiments for B > 0.3,
the critical wavelength was a few times the bottom-layer thickness and there were
between four and six fully developed upwellings over one tank-width. For B < 0.3,
calculations predict very small values of the critical wavenumber and hence very large
wavelengths, but we managed experiments only far above the stability curve. In those
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Figure 16. Regime diagram in Ra vs. B space. Open squares correspond to unstable situations
manifested by oscillating domes and basins. Open circles correspond to experiments carried
out close to marginal stability, which we assessed using the amplitude of the interface
deformation (see table 2). Filled circles correspond to experiments with negligible flow in the
lower layer. Symbols labelled ‘L’ correspond to experiments that were in the layered regime.
Two experiments exhibited ambiguous flow patterns and are labelled ‘?’ (see text for an
explanation). Open symbols with no label correspond to experiments in the oscillatory regime.

cases, the Rayleigh number was larger than the critical value by a factor of about
3 and the wavelength was much smaller than the critical value. For example, we
observed a pattern of four by four upwellings across the tank in experiment LIZ03
(Ra = 142, B = 0.10, table 1). In such conditions, we expect that the flow field was
weakly affected by the presence of sidewalls.

4.4. Stability diagram

The 27 experiments (table 1) delineate roughly the stability curve in (Ra, B)-space
(figure 16). We classified experiments in three groups. For the stable regime, we
observed visually neither internal motion in the lower layer, nor deformation of
interface and we recorded no temperature fluctuations in the lower layer. At the
opposite extreme, fully developed instabilities were clear both visually and as recorded
by temperature. A third group corresponds to experiments near stability, such that
the magnitude either of sustained interface deformation or of heights above the base
of the tank, dm, of transient upwelling was small, dm/d < 1.5. As shown in table 2,
for a given value of B , this ratio decreases towards 1 with decreasing Ra, i.e. as Ra
approaches the stability threshold. We used this behaviour to determine the critical
Rayleigh number RaC for instability. For fixed B , we extrapolated the Ra versus dm/d

data to dm/d = 1 (table 2), such that there is no deformation of the interface. This
led to RaC ≈ 200 for B = 0.37, RaC ≈ 500 for B =0.45 and RaC ≈ 670 for B =0.50.
These results show that the critical Rayleigh number is an increasing function of
the buoyancy ratio, in agreement with the trend predicted by the marginal stability
analysis.

Experiments where instability occurred were also separated into two groups corres-
ponding to the ‘oscillatory’ and ‘layered’ regimes (table 1). The former was such
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Expt no. Ra B η1/η2 dm/d λ/d k′

LIT15 1057 0.36 265 5.0† 3.0 2.1
LIT18 640 0.37 287 2.4 3.6 1.7
LIT19 333 0.37 287 1.2 4.4 1.4
LIT16 779 0.44 265 2.1 3.1 2.0
GT25 564 0.46 5800 1.5 4.3 1.5
LIT06 1178 0.50 86 2.3 2.7 2.3
LIT13 1030 0.51 291 1.7 3.0 2.0
LIT09 677 0.50 65 1.0 3.3 1.9
LIT10 1209 0.67 65 1.1 2.3 2.7

†For this experiment, upwellings rose to the top of the upper layer.

Table 2. Wavenumber and interface deformation.

that we observed upwellings which rose and rapidly fell back down. The latter was
such that the interface deformed and adopted a quasi-stable configuration which
evolved slowly with time as the upper-layer temperature increased. Two experiments,
LIZ01 and LIT22 (table 1), were ambiguous, with large and slow deformation of
the interface, but rather small temperature fluctuations in the lower layer. These
experiments are qualified as simply ‘unstable’ and labelled with a question mark in
figure 16.

We could not define the threshold for the oscillatory mode at small buoyancy
numbers, but experiments GT03 and LIZ03 at B =0.14 and B = 0.10, respectively,
and at Ra ≈ 140, confirm the lack of stability at low Rayleigh numbers.

We did not examine the dependence on the viscosity contrast in detail, but we did
carry out two experiments close to the stability curve with nearly identical values
of Ra and B , with viscosity contrasts differing by almost one order of magnitude
(LIZ15 and LIT19, table 1). We observed the same behaviour for each, consistent
with the analysis of marginal stability. The viscosity contrast for all the experiments
was larger than 10, and for such values theory indicates that results are not sensitive
to the viscosity contrast (figure 4). Accordingly, we ignored the viscosity contrast
in constructing figure 16. We also did not investigate the dependence of the critical
Rayleigh number on the thickness ratio D/d because theory indicates that it is very
small in the range of relevance to our experiments (B > 0.3; figure 4). Save for two
exceptions, this ratio took values between 3.2 and 6.2 in the experiments given in
table 1.

We did not attempt to determine accurately the critical Rayleigh number for the
layered regime. In one experiment (LIT10, table 1) with Ra ≈ 1209 and B = 0.67, very
small, stable deformation of the interface (dm/d = 1.1) indicates that it was carried out
very close to stability. Moreover, the dimensionless wavenumber for this experiment
of 2.7 (table 2), which we measured by counting the number of upwelling zones and
scaling by the layer thickness, is very close to the theoretical value (figures 3 and
4). We take the Rayleigh number for this experiment as approximating the critical
Rayleigh number for the layered regime.

The experimentally derived stability diagram (figure 16) was built in three steps. In
the intermediate range of B values, we used the three critical values of the Rayleigh
number determined above as well as two experiments at B =0.54 and B =0.55 which
straddle the stability threshold. For small values ofB , we could only determine upper
bounds on the critical Rayleigh number. For values of B larger than 0.55, we relied on
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Figure 17. Plot of dimensionless wavenumbers k′ as a function of Rayleigh number Ra
for different values of buoyancy number B (table 2): �, B = 0.36–0.37; �, B = 0.44–0.46; �,
B =0.50–0.51. For each group, we extrapolate the relationship between k′ and Ra to the
approximate value of the critical Rayleigh number, RaC; �, approximate values of k′

C for the
corresponding values of B .

experiment LIT10, which, as explained above, was very close to stability, continuity
with data at lower values of B as well as theoretical expectations. This stability
diagram bears the same form as that derived for marginal stability (figures 3 and
4), but the observed stability curve is displaced to larger values of the buoyancy
number than that for marginal stability. We attribute this difference to the presence
of small-scale convection at the interface between the two liquids in the former, and
its explicit omission in the latter. Such motion should enhance perturbations at the
interface and therefore instability, and one may expect that a larger buoyancy ratio
is required to ensure stability.

We estimated dimensionless wavenumbers corresponding to critical Rayleigh
numbers by using experiments closest to the stability curve. For a given buoyancy
number, the wavenumber increases as the Rayleigh number increases (figure 17,
table 2). For each value of B , projecting the measured dependence of k′ on Ra to
its intercept with the estimated RaC yields an estimate of k′

C . As shown in figure
17, this yields values of k′

C ≈ 1.3 for B = 0.37, k′
C ≈ 1.4 for B = 0.45 and k′

C = 1.9 for
B = 0.50. These values are in the range of values for marginal stability and reproduce
the predicted trend of increasing critical wavenumber k′

C with increasing B (figures 3
and 4). Precise comparisons with theoretical values are unwarranted because of the
simplifying assumptions that were made in the marginal stability analysis.

We determined the angular frequency of the oscillatory regime in a few cases. In
a typical experiment, we waited for one full cycle of rise and fall and the start of
a new cycle. The ratio between the diffusive time scale d2/κ and the Stokes scaling
used in the theory is the Rayleigh number for the lower layer, Ra. Thus, as B is
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Figure 18. Dimensionless temperature as a function of dimensionless time for an experiment
(LIT 26) in the oscillatory regime at a low value of the buoyancy number (B = 0.30) far
from the stability curve. Ra = 1230; η1/η2 = 1150. For this experiment, Ra ≈ 4RaC . These data
should be compared to those for experiment LIT12 in the layered regime, which had an almost
identical Rayleigh number (Ra ≈ 1300) and a larger buoyancy number (B = 0.55), and which
showed little variation in temperature (figure 15). By contrast, oscillatory convection manifests
itself by large variations in temperature across the bottom layer in this low-buoyancy-number
experiment. This comparison shows that the two different regimes persist to relatively large
Rayleigh numbers.

decreased and hence as RaC decreases along the stability curve, oscillatory instability
takes an increasingly longer time to develop. Figure 13 shows two complete cycles
of rise and fall in an experiment with a Rayleigh number that was not much larger
than the critical value (LIT06, Ra = 1178, B = 0.50, table 1). This allows a reliable
determination of the dimensionless angular frequency ω′ = 140 × 10−4, which has the
same order of magnitude as values along the theoretical stability curve (figure 3). The
relationship between the frequency values at finite amplitude and in marginal stability
conditions is likely to be complicated, as the former involve vertical flow over a finite
distance.

4.5. Finite-amplitude flow at supercritical Rayleigh numbers

The experiments carried out for Rayleigh numbers many times RaC require an
extensive report on their own. Here, we describe briefly some particular features.

The main boundary separating the two types of convective instability, defined by
B ≈ 0.5, applies at large values of the Rayleigh number. Two experiments carried out
with nearly the same Ra ( ≈ 1300), but different values of B (0.30 and 0.55) show
very different development (figures 15 and 18). For the larger value of B , temperature
fluctuations are conspicuously absent in the lower layer, but for the smaller value of
B , the large variations in temperature attest to oscillatory convection, as we observed.

The two regimes of convection differ not merely by their flow patterns and
amplitudes of interface deformation, but also by the efficiency of mixing of the
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two layers. For the Earth, the range of interest includes relatively small values of the
Rayleigh number and we restrict the discussion to such conditions. In the layered
regime at large values of the buoyancy number, convective downwelling in the lower
layer entrains thin threads of the upper fluid into the lower layer. The low rate
of mixing was too small to quantify accurately, though we did observe the mixing
process in action. In the oscillatory regime, however, mixing proceeded in a different
manner. The larger the Rayleigh number, the higher the upwelling plumes of lower
fluid rose and the more contorted they became. After tall upwelling plumes reached
their maximum heights, their downward fall did not proceed with the same smooth
axisymmetric geometry. Instead, the tall fingers of lower fluid folded back onto
themselves, encapsulated upper-layer fluid and dragged it downwards into the lower
layer. Accordingly, the lower layer grew in thickness.

5. The continental lithosphere
Not only is continental lithosphere thick and chemically buoyant, but the thickness

and intrinsic density are related to one another: the older the continent, the smaller its
intrinsic density and the larger its thickness. Such a relationship is unlikely to arise by
coincidence. Moreover, the buoyancy numbers of continents of various ages lie within
the range for the oscillatory regime (0.25 < B < 0.6), for which such a relationship
holds at marginal stability (Cottrell et al. 2004). An obvious question is, ‘How did
continental lithosphere reach this state?’ This is not the place for a detailed discussion
of the relevant geological processes and assessment of proposed explanations, but in
the following, we comment briefly on the current interpretations and debates.

By analogy with the experiments described above (e.g. figures 12 and 13), the
viscous buoyant layer in the Earth, the lithosphere, should undergo discrete instability
events that are separated in time. During such events, downwelling plumes of cold,
but intrinsically light material should sink into the underlying asthenosphere, and
asthenospheric material should upwell where the lithosphere thins. Upwelling implies
decompression of hot asthenosphere, which in turn implies melting and basaltic
eruption. This melting has one crucial consequence: the mantle residue left by the
extraction of melt should be intrinsically less dense than normal asthenosphere and
hence should become part of a lithospheric root. In addition, where the lithosphere is
stretched and thinned, the continental crust should also be subjected to divergent flow,
thinning, and subsidence, so as to create space for sediment to accumulate. Above
downwelling flow, the continental crust should undergo convergent flow, which leads
to compressive features, such as folds and thrust faults.

The consolidation of Archean (age >2.5Ga) lithosphere in South Africa seems to
have occurred not in one event but in a series of discrete events within a relatively
short time-span between 3.2 and 2.7 billions years (e.g. Shirey et al. 2002, 2003;
Eglington and Armstrong 2004; Richardson, Shirey & Harris 2004). Near that time,
two blocks, the Kaapvaal and Zimbabwe cratons and the intervening Limpopo Belt, a
zone of compression, underwent major rifting events (indicating horizontal extension)
and became buried by sediment. Simultaneously, basaltic eruption was widespread.
Geochemical analysis of the basalt shows that it was extracted from the well-mixed
convecting mantle. Peaks of geological activity were separated by about 200 million
years (Eglington & Armstrong 2004). As discussed below, these events have been
explained in other ways, with each event ascribed to a separate process. Yet, all of
these geologic events are predictable consequences of the oscillatory convection that
we discuss in the previous paragraph.
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Although ancient continental interiors are commonly described as stable, many
have been subjected to major perturbations, not just on their margins, but also
within their interiors. For instance, at 2.1 Ga, the production of enormous quantities
of basalt formed the Bushveld igneous complex in South Africa, the world’s largest
platinum repository. In North America, continental lithosphere was perturbed by
the Keweenawan rift of 1.1 billion years ago and later by the formation of four
intracratonic basins (Williston, Hudson Bay, Illinois and Michigan) about 500 million
years ago. Such events occurred far from ocean basins and are not related to other
tectonic events. For this reason, they have been explained as consequences of plumes
of hot mantle impinging on the base of the lithosphere.

Part of the difficulty in interpreting the ancient rock record is the paucity of
alternative phenomena whose powers of explanation can be compared against one
another. Most geological interpretations rely on analogies with plate tectonics and
hence on relative motion of oceanic plates. In this framework, events within continents
are seen as processes responding to remotely applied forces to their boundaries. We
recognize that many believe that these events mark collisions between cratons at
subduction zones analogous to modern plate tectonic settings, but we are aware also
that others have questioned such collisions and suggest that material assumed to have
lain far away from cratons in fact is autochthonous to them (e.g. Prendergast 2004;
Shimizu et al. 2004).

Suppose instead that the events at 3.2 and 3.0 Ga in South Africa reflect oscillatory
convection in which blobs sank and then rose with an interval of 200 Myr between
them. These events affected cratonic blocks with typical dimensions of ∼500 km. From
figure 3, we see that for B > 0.3, ω′

c ∼ 50 − 150 × 10−4. Rendering these dimensional
gives for the period T of such oscillations:

T =
2π

ωc

=
2π

ω′
c

ηl

ρα�Tgd
(30)

With ηl = 1021 Pa s or 1022 Pa s, ρ = 3.3 × 103 kgm−3, α = 4 × 10−5 ◦C−1, �T ∼ 1000 ◦C,
g = 9.8 m s−2 and d = 150 km, equation (30) gives T ∼ 130 Myr to ∼1.3 Gyr for
ω′

c ∼ 80 × 10−4. Corresponding values of k′
C ∼ 1.5–2 imply wavelengths of ∼3–4 times

the thickness of the layer, corresponding to lateral distances of ∼400–600 km.
Thus, a phenomenon proposed simply on fluid dynamical grounds and scaled
to Earth-like conditions corresponds to periods and length scales appropriate to
geological phenomena. Oscillatory convection might have been a crucial process in
the consolidation of Archean and Proterozoic cratons.
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Appendix A. Mathematical formalism
The governing equations can be written:

∇ · uj = 0, (A 1)
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ρ

[
∂

∂t
+ uj · ∇

]
uj = − ∇pj + ραgGjzk̂ + ηj ∇2ui, (A 2)

[
∂

∂t
+ ui · ∇

]
T = κ∇2T , (A 3)

where subscript j takes values of 1 or 2 depending on the fluid layer. In the limit of
small perturbations, equation (A3) becomes:

∂

∂t
ϑj − wjGj = κ∇2ϑj , (A 4)

where ϑ1 and ϑ2 are perturbations to temperature in the two layers. To non-
dimensionalize (A1), (A2) and (A4), we scale distances with the thickness of the
lower layer, d , and velocity with the Stokes velocity for layer 1:

uj = u′
jV = u′

j

(
ρ0αgG1d

3

η1

)
. (A 5)

For time and pressure, we use

t = t ′ d

V
= t ′

(
η1

ρ0αgG1d2

)
, (A 6)

p = p′ η1V

d
= p′(αρ0gG1d

2). (A 7)

As usual, primes indicate dimensionless quantities.
Equation (A2) now simplifies to:

Ra1

Pr

∂u′
j

∂t ′ = −∇′p′
j + ϑ ′

j k̂ +
ηj

η1

∇′2u′
j , (A 8)

where the Rayleigh number is defined by (6) and the Prandtl number by Pr = ν1/

κ = η1/κρ0. In the limit of infinite Prandtl number, the left-hand side of (A8) vanishes.
Following standard methods, we take the curl of (A8) to eliminate pressure, we

then take the curl again, and finally we cross differentiate (A8) and (A4), to eliminate
the perturbation to temperature. We obtain an equation solely in terms of the vertical
component of velocity, w′.(

Ra
∂

∂t ′ − ∇′2
)

νj

ν1

∇′4w′
j = −Gj

G1

Ra1

∂2w′
j

∂x ′2 . (A 9)

Dropping primes, we assume solutions of the form:

wj ∼ exp(qij z + ikx + st). (A 10)

Substitution of (A10) into (A9) yields conditions on the values of qij

νj

ν1

(
sRa + k2 − q2

ij

)(
q2

ij − k2
)2

=
Gj

G1

k2Ra1. (A 11)

Thus, solutions to (A11) take the form

wj (x, z, t) =

3∑
i=1

[Aij exp(qij z) + Bij exp(−qij z)] exp(ikx + st). (A 12)

As usual, we then use boundary conditions to constrain Aij and Bij . At the bottom
of the lower layer, z = 0, we assume no vertical or horizontal components of velocity
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and no perturbation to temperature:

w1 = ∂w1/∂z = ∇4w1 = 0, (A 13)

where the equation of continuity and incompressibility have been used. At the top of
the upper layer, z = D/d + 1, we assume no vertical component of velocity, no shear
stress, and no perturbation to temperature:

w2 = ∂2w2/∂z2 = ∇4w2 = 0, (A 14)

where again the equation of continuity and incompressibility have been used. At
the interface between the layers, z = 1, we assume continuity of both vertical and
horizontal components of velocity:

w1 − w2 = 0, (A 15)

∂w1

∂z
− ∂w2

∂z
= 0. (A 16)

We assume continuity of shear stress, τxz:

∂2w1

∂z2
− ∂2w1

∂x2
− 1

γ

(
∂2w2

∂z2
− ∂2w2

∂x2

)
= 0. (A 17)

Continuity of normal stress yields (see Le Bars & Davaille 2002):

∇2 ∂2

∂t∂z
(γw1 − w2) + 2

∂4

∂t∂z∂x2
(γw1 − w2) + γB

∂2w2

∂x2
= 0. (A 18)

Equation (A18) contains two important features: it provides the only place where the
buoyancy number B appears, and it also introduces the angular frequency ω directly,
through the differentiation by time, though ω also affects the values of qij in (A11).
Continuity of perturbed temperature yields:

γ ∇4w1 − ∇4w2 = 0. (A 19)

Continuity of the perturbed temperature gradient (heat flux) yields:

γ ∇4 ∂w1

∂z
− ∇4 ∂w2

∂z
= 0. (A 20)

The boundary conditions in (A13)–(A20) place 12 conditions on the 6 values each
of Aij and Bij . At the threshold of instability, the real part of s must vanish, but
the imaginary part need not. Thus, we let s = iω in (A11), which defines values of
qij as functions of k and ω. For all six values of Aij and Bij not to equal zero, the
determinant of the matrix of their coefficients given by (A13)–(A20) must vanish. For
selected values of B , G2, γ and D, we sought values of Ra1, k and ω for which the
determinant vanished. We then sought the smallest value of the Rayleigh number,
RaC , and the corresponding (dimensionless) values of wavenumber, kC , and buoyancy
frequency, ωC .

Appendix B. The effect of the temperature gradient in the upper layer
We seek solutions for negligible temperature gradients in the upper layer. To

determine what defines negligible, for selected values of B , γ and D, we calculated
values of RaC for a wide range of values of G2/G1. For different values of γ and
D, there exists a value of G2/G1 below which RaC becomes independent of G2/G1

(figure 19). Moreover, for sufficiently large values of G2/G1, RaC scales inversely with
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Figure 19. Dependence of RaC on G2/G1 for B = 0.001, γ = 100, and different values of D/d .
Note that for sufficiently small temperature gradients in the upper layer, G2, RaC is independent
of G2/G1. For larger values of G2/G1, however, RaC decreases inversely proportionally to
G2/G1, because in these cases, the upper layer becomes the unstable layer, not the lower
one. In all calculations discussed in this paper, we used values of G2/G1 for which RaC is
independent of G2/G1.

G2/G1. In this range, the upper layer is the more unstable layer, and convection
develops faster within it. We define RaC in terms of properties of the lower layer, but
if we used the upper layer, we would have an expression for the Rayleigh number
RaUL given by

RaUL =
G2

G1

γD4Ra1. (B 1)

Depending upon γ and D, there exists a value of G2/G1 for which RaUL should
exceed its critical value. Then, as G2/G1 increases, RaUL equals that critical value,
and as implied by (B1), RaC should decrease inversely with G2/G1 (figure 19).
Moreover, when the upper layer is the more unstable, if the value of D increased
two-fold, the value of RaC should decrease by 16 times, also shown in figure 19. All
calculations discussed in the main text were made for values of G2/G1 such that RaC

is independent of its value.
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